
DOI: 10.1007/s10910-005-9023-3
Journal of Mathematical Chemistry, Vol. 40, No. 2, August 2006 (© 2006)

Evaluation of the Boys function using analytical
relations
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The analytical relations for Boys function Fm(x) are presented. These relations are
useful in the fast and more accurate calculations of multicenter molecular integrals over
Gaussian type orbitals (GTOs). The formulas obtained are numerically stable for all
values of m and x.
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1. Introduction

One of the remarkable advances in quantum chemistry was the Gaussian
expansion of Slater type orbitals (STOs) basis sets of which were labeled STO-
NG. The common link between almost all the methods to develop STO-NG sets
is the use of the Boys function [1]

Fm(x) =
∫ 1

0
t2me−xt2

dt . (1)

It is easy to express the Boys function through the complete and incomplete
gamma functions:

Fm(x) = 1
2xm+1/2

{
γ (m + 1/2, x), (2)

�(m + 1/2) − �(m + 1/2, x), (3)

where x � 0, m = α−1/2, α = n+ε, 0 < ε < 1, n = 0, 1, 2, . . . and the gamma
functions are defined as [2]
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γ (α, x) =
∫ x

0
tα−1e−tdt, (4)

�(α, x) =
∫ ∞

x

tα−1e−tdt, (5)

�(α) =
∫ ∞

0
tα−1e−tdt = γ (α, x) + �(α, x). (6)

Thus, by the use of the method set out in our paper [3] for the gamma functions,
the analytical relations can be established for the Boys function.

The accurate numerical calculation of Boys function is more important for
large molecules like proteins than for small organic molecules, because the enor-
mous number of calculation results in considerable accumulation of numerical
errors [4–8]. It should be noted that, in a typical high accuracy calculation, only
a small portion of CPU time is spent in computing molecular integrals and the
major part is spent in computing wavefunction parameters which require the fast
and accurate evaluation of the Boys function. In literature, for improving the
accurate evaluation of Fm(x) function, the different methods have been proposed
[9–23]. The protein calculations in a Hartree-Fock level will be often performed
in the near future, and accurate Boys function calculation is required particularly
for such larger calculations. In this article, we introduce a new general and exact,
yet simple, analytical algorithm for the evaluation of the Boys function Fm(x)

with arbitrary integer or non-integer values of m.

2. Upward and downward recurrences

In order to establish the analytical formulas for Boys function, equation (1),
we shall use the following recursive relations [9]:
upward recurrence

Fm(x) = 1
2x

[(2m − 1)Fm−1(x) − e−x ] (7)

downward recurrence

Fm(x) = 1
2m + 1

(2xFm+1(x) + e−x). (8)

Taking into account the formulas for starting terms of gamma functions
presented in Ref. [3] in equations (2) and (3) it is easy to obtain the following
relations for the starting terms of Boys function:

Fε+1/2(x) =



1
2x

(1 − e−x) for ε = 0
1
2

∞∑
m=0

(−1)mxm

m!(1+ε+m)
for 0 < ε < 1.

(9)
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Using the method set out in Ref. [24] we can show that as a result of hav-
ing d significant digits in Fm(x), the downward recursion should be started from
the even value of nt satisfying

nt �
{ d

|log(nmax/x)| + nmax for nmax �= x

d
|log(nmax)| + nmax for nmax = x

(10)

Fnt+ε−1/2(x) ∼= 1
xnt−1

Fε+1/2(x). (11)

3. Analytical relations

The analytical formulas for the Boys function in terms of starting values,
equations (9) and (11), can be established from its recurrence relations (7) and
(8). For this purpose we use the method set out in Ref. [3]. Then we obtain:

Fm(x) = 1
xk

[(m + 1/2)kFm−k(x) − 1
2

e−x

k∑
i=1

(m + 1/2)k−ix
i−1] (12)

and

Fm−k(x) = 1
(m + 1/2)k

[xkFm(x) + 1
2

e−x

k∑
i=1

(m + 1/2)k−ix
i−1], (13)

where m = n+ ε − 1/2 and 0 � k � n. See Ref. [3] for the exact definition of the
coefficients (m + 1/2)k.

In special cases of equations (12) and (13) for k = n−1 and n = nt , respec-
tively, we obtain for the Boys function the following analytical relations in terms
of initial values:

Fn+ε−1/2(x) = 1
xn−1

[(n + ε)n−1Fε+1/2(x) − 1
2

e−x

n−1∑
i=1

(n + ε)n−i−1x
i−1] (14)

and

Fmt−k(x) = 1
(mt + 1/2)k

[xkFmt
(x) + 1

2
e−x

k∑
i=1

(mt + 1/2)k−ix
i−1, (15)

where mt = nt + ε − 1/2 and 0 � k � nt .
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4. Numerical results and discussion

Analytical formulae have been presented for computation of the Boys func-
tion that arise in molecular calculations with the help of Gaussian types orbitals
(GTOs). This analytical algorithm can be used for the arbitrary values of param-
eters m and x. The computer results obtained in this work were compared with
those provided by other methods.

The results of calculations for various values of parameters on a PEN-
TIUM III 800 MHz (using Turbo Pascal language), Maple 7 and Mathematica
4 international software are given in Tables 1 and 2. Extensive tests were per-
formed for a variety of parameters. As can be seen from the tables, the accu-
racy of computer results in all of the calculations are satisfactory under range
of parameters m and x.

Table 1
Computational results for Fm(x) obtained from equation (12).

m x Mathematica 4 Maple 7 Turbo pascal

0.5 6.8 7.34475165333247E-02 7.34475165333247E-02 7.34475165333247E-02
13 14.1 1.56775160456192E-07 1.56775160456192E-07 1.56775160456192E-07
20.6 32.4 2.17602798734846E-14 2.17602798734846E-14 2.17602798734846E-14
25 6.4 4.28028518677348E-05 4.28028518677348E-05 4.28028518677348E-05
64 50 5.67024356263279E-24 5.67024356263282E-24 5.67024356263277E-24
75.5 40.8 2.63173492081630E-20 2.6317349205857E-20 2.63173492073033E-20
80.3 78.2 6.35062774057122E-36 6.35062774057123E-36 6.35062774057123E-36

Table 2
Computational results for Fm(x) obtained from equation (14).

m x Mathematica 4 Maple 7 Turbo pascal

4 7 8.03538503977806E-04 8.03538503977806E-04 8.03538503977806E-04
8.5 3.6 2.31681539108704E-03 2.31681539108704E-03 2.31681539108704E-03

15.3 20.7 5.40914879973724E-10 5.40914879973724E-10 5.40914879973724E-10
1.8 25.3 3.45745419193244E-04 3.45745419193244E-04 3.45745419193244E-04

30 26 3.57321060811178E-13 3.57321060811177E-13 3.57321060811181E-13
46.8 37.6 1.91851951160577E-18 1.91851951160577E-18 1.91851951160577E-18

100 125.1 7.75391047694625E-55 7.75391047694625E-55 7.75391047670974E-55

References

[1] S.F. Boys, Proc. Roy. Soc. A 200 (1950) 542.
[2] I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Sums, Series and Products 4th ed. (New

York, Academic Press, 1980).
[3] I.I. Guseinov and B.A. Mamedov, J. Math. Chem. 36 (2004) 341.



I.I. Guseinov and B.A. Mamedov / Evaluation of the Boys function using analytical relations 183

[4] M. Challacombe and E. Schwegler, J. Chem. Phys. 106 (1997) 5526.
[5] C.V. Alsenoy, C.H. Yu, A. Peeters, J.M.L. Martin and L. Schafer, J. Phys. Chem. A 102 (1998)

2246.
[6] H. Takashima, K. Kitamura, K. Tanaba and U. Nagashima, J. Comput. Phys. 20 (1999) 443.
[7] G. Frenking (ed.), J. Comput.Chem. (Special Issue: Quantum Chemical Methods for Large

Molecules),21 (2000) 16.
[8] K. Tsuda, H. Kaneko, J. Shimada, and T. Takada, Comput. Phys. Comm. 142 (2001) 140.
[9] I. Shavitt, In: Methods in Computational Physics, Vol. 2, eds. B. Alder, S. Fernbach, M. Roten-

berg (Academic Press, New York, 1963).
[10] S. Huzinaga, Prog. Theor. Phys. (Suppl.) 40 (1967) 52.
[11] L.J. Schaad and G.O. Morrell, J. Chem. Phys. 56 (1971) 1965.
[12] L. Jakab, J. Chem. Phys. 70 (1979) 4421.
[13] J. Grotendorst and E.O. Steinborn, J. Chem. Phys. 84 (1986) 5617.
[14] P.M.W. Gill, B.G. Johnson and J.A. Pople, Int. J. Quant. Chem. 40 (1991) 753.
[15] P.M.W. Gill and J.A. Pople, Int. J. Quant. Chem. 40 (1991) 753.
[16] P.M.W. Gill, In: Advances in Quantum Chemistry, Vol. 25, ed. P. Löwdin (Academic Press, San
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